Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1229, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336876

ABSTRACT

Endogenous retroviruses (ERVs) are an integral part of the mammalian genome. The role of immune control of ERVs in general is poorly defined as is their function as anti-cancer immune targets or drivers of autoimmune disease. Here, we generate mouse-strains where Moloney-Murine Leukemia Virus tagged with GFP (ERV-GFP) infected the mouse germline. This enables us to analyze the role of genetic, epigenetic and cell intrinsic restriction factors in ERV activation and control. We identify an autoreactive B cell response against the neo-self/ERV antigen GFP as a key mechanism of ERV control. Hallmarks of this response are spontaneous ERV-GFP+ germinal center formation, elevated serum IFN-γ levels and a dependency on Age-associated B cells (ABCs) a subclass of T-bet+ memory B cells. Impairment of IgM B cell receptor-signal in nucleic-acid sensing TLR-deficient mice contributes to defective ERV control. Although ERVs are a part of the genome they break immune tolerance, induce immune surveillance against ERV-derived self-antigens and shape the host immune response.


Subject(s)
B-Lymphocytes , Endogenous Retroviruses , Animals , Mice , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Endogenous Retroviruses/genetics , Mammals/genetics
2.
Antibodies (Basel) ; 12(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36648888

ABSTRACT

The B cell antigen receptor (BCR)-repertoire is capable of recognizing a nearly unlimited number of antigens. Inevitably, the random nature of antibody gene segment rearrangement, needed in order to provide mature B cells, will generate autoreactive specificities. Once tolerance mechanisms fail to block the activation and differentiation of autoreactive B cells, harmful autoantibodies may get secreted establishing autoimmune diseases. Besides the hallmark of autoimmunity, namely IgG autoantibodies, IgM autoantibodies are also found in many autoimmune diseases. In addition to pathogenic functions of secreted IgM the IgM-BCR expressing B cell might be the initial check-point where, in conjunction with innate receptor signals, B cell mediated autoimmunity starts it fateful course. Recently, pentameric IgM autoantibodies have been shown to contribute significantly to the pathogenesis of various autoimmune diseases, such as rheumatoid arthritis (RA), autoimmune hemolytic anemia (AIHA), pemphigus or autoimmune neuropathy. Further, recent studies suggest differences in the recognition of autoantigen by IgG and IgM autoantibodies, or propose a central role of anti-ACE2-IgM autoantibodies in severe COVID-19. However, exact mechanisms still remain to be uncovered in detail. This article focuses on summarizing recent findings regarding the importance of autoreactive IgM in establishing autoimmune diseases.

3.
Rheumatology (Oxford) ; 62(4): 1699-1705, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36193988

ABSTRACT

OBJECTIVES: Inborn errors of immunity manifest with susceptibility to infection but may also present with immune dysregulation only. According to the European Society for Immunodeficiencies Registry about 50% of inborn errors of immunity are classified as common variable immunodeficiencies (CVID). In only few CVID patients are monogenic causes identified. IFN regulatory factor-2 binding protein 2 (IRF2BP2) is one of 20 known genes associated with CVID phenotypes and has only been reported in two families so far. We report another IRF2BP2-deficient patient with a novel pathogenic variant and phenotype and characterize impaired B cell function and immune dysregulation. METHODS: We performed trio whole-exome sequencing, determined B cell subpopulations and intracellular calcium mobilization upon B cell receptor crosslinking in B cells. T cell subpopulations, T cell proliferation and a type I IFN signature were measured. Colonoscopy and gastroduodenoscopy including histopathology were performed. RESULTS: The 33-year-old male presented with recurrent respiratory infections since childhood, colitis and RA beginning at age 25 years. We identified a novel de novo nonsense IRF2BP2 variant c.1618C>T; p.(Q540*). IgG deficiency was detected as consequence of a severe B cell differentiation defect. This was confirmed by impaired plasmablast formation upon stimulation with CpG. No serum autoantibodies were detected. Intracellular cytokine production in CD4+ T cells and CTLA4 expression on FOXP3+ Tregs were impaired. Type I IFN signature was elevated. CONCLUSION: The identified loss-of-function variant in IRF2BP2 severely impairs B cell development and T cell homeostasis, and may be associated with colitis and RA. Our results provide further evidence for association of IRF2BP2 with CVID and contribute to the understanding of the underlying pathomechanisms.


Subject(s)
CD4-Positive T-Lymphocytes , Transcription Factors , Male , B-Lymphocytes , Mutation , Phenotype , Humans , Adult
4.
Front Immunol ; 13: 1016263, 2022.
Article in English | MEDLINE | ID: mdl-36341420

ABSTRACT

Rheumatoid arthritis is an autoimmune disease characterized by joint inflammation due to autoantibodies targeting multiple self-proteins. Most patients with poor prognosis show elevated titers of IgM antibodies specifically binding to IgG. Such autoreactive antibodies are referred to as rheumatoid factor (RF). However, their biological function and contribution to disease progression remains elusive. We have recently shown that autoreactive antibodies are present in healthy individuals and play an important role in regulating physiological processes. This regulatory mechanism is determined by the class and affinity of the autoreactive antibody, as low-affinity autoreactive IgM neutralizes the recognized autoantigen while high-affinity IgM protects its autoantigen from degradation. Here, we show that RFs possessing a high affinity and mono-specificity to IgG have a stabilizing effect on IgG, whereas low-affinity polyreactive RFs neutralize IgG in vivo. These results suggest that autoreactive IgM antibodies recognizing IgG play a crucial role in regulating IgG homeostasis and that a disbalance between IgM-mediated IgG degradation and stabilization might affect the onset and progression of autoimmune diseases. Consequently, restoring this balance using low-affinity anti-IgG IgM might be a promising therapeutic approach for autoimmune diseases involving autoreactive IgG.


Subject(s)
Arthritis, Rheumatoid , Rheumatoid Factor , Humans , Autoantibodies , Immunoglobulin M , Autoantigens , Homeostasis
5.
Front Immunol ; 13: 842340, 2022.
Article in English | MEDLINE | ID: mdl-35371049

ABSTRACT

The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.


Subject(s)
Monomeric GTP-Binding Proteins , Precursor Cells, B-Lymphoid , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Mice , Monomeric GTP-Binding Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cells, B-Lymphoid/metabolism , Receptors, Antigen, B-Cell/genetics , rhoA GTP-Binding Protein
6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35131852

ABSTRACT

Homeostasis of metabolism by hormone production is crucial for maintaining physiological integrity, as disbalance can cause severe metabolic disorders such as diabetes mellitus. Here, we show that antibody-deficient mice and immunodeficiency patients have subphysiological blood glucose concentrations. Restoring blood glucose physiology required total IgG injections and insulin-specific IgG antibodies detected in total IgG preparations and in the serum of healthy individuals. In addition to the insulin-neutralizing anti-insulin IgG, we identified two fractions of anti-insulin IgM in the serum of healthy individuals. These autoreactive IgM fractions differ in their affinity to insulin. Interestingly, the low-affinity IgM fraction (anti-insulin IgMlow) neutralizes insulin and leads to increased blood glucose, whereas the high-affinity IgM fraction (anti-insulin IgMhigh) protects insulin from neutralization by anti-insulin IgG, thereby preventing blood glucose dysregulation. To demonstrate that anti-insulin IgMhigh acts as a protector of insulin and counteracts insulin neutralization by anti-insulin IgG, we expressed the variable regions of a high-affinity anti-insulin antibody as IgG and IgM. Remarkably, the recombinant anti-insulin IgMhigh normalized insulin function and prevented IgG-mediated insulin neutralization. These results suggest that autoreactive antibodies recognizing insulin are key regulators of blood glucose and metabolism, as they control the concentration of insulin in the blood. Moreover, our data suggest that preventing autoimmune damage and maintaining physiological homeostasis requires adaptive tolerance mechanisms generating high-affinity autoreactive IgM antibodies during memory responses.


Subject(s)
Autoantibodies/immunology , Blood Glucose/immunology , Homeostasis/immunology , Insulin/immunology , Animals , Antibody Affinity/immunology , Autoimmune Diseases/immunology , Female , Humans , Immune Tolerance/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Mice , Mice, Inbred C57BL
7.
Bioessays ; 44(3): e2100236, 2022 03.
Article in English | MEDLINE | ID: mdl-34984705

ABSTRACT

The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.


Subject(s)
Autoantigens , Immune Tolerance , Animals , Autoantibodies/genetics , Autoantigens/genetics , Autoantigens/metabolism , Autoimmunity , B-Lymphocytes , Clonal Anergy , Immunoglobulin M/genetics , Mice
8.
J Immunol ; 208(2): 293-302, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34930782

ABSTRACT

A considerable proportion of peripheral B cells is autoreactive, and it is unclear how the activation of such potentially harmful cells is regulated. In this study, we show that the different activation thresholds or IgM and IgD BCRs adjust B cell activation to the diverse requirements during development. We rely on the autoreactive 3-83 model BCR to generate and analyze mice expressing exclusively autoreactive IgD BCRs on two different backgrounds that determine two stages of autoreactivity, depending on the presence or absence of the cognate Ag. By comparing these models with IgM-expressing control mice, we found that, compared with IgM, IgD has a higher activation threshold in vivo, as it requires autoantigen to enable normal B cell development, including allelic exclusion. Our data indicate that IgM provides the high sensitivity required during early developmental stages to trigger editing of any autoreactive specificities, including those enabling weak interaction with autoantigen. In contrast, IgD has the unique ability to neglect weakly interacting autoantigens while retaining reactivity to higher-affinity Ag. This IgD function enables mature B cells to ignore autoantigens while remaining able to efficiently respond to foreign threats.


Subject(s)
Autoantigens/immunology , B-Lymphocytes/immunology , Clonal Anergy/immunology , Immunoglobulin D/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Antibody Specificity/immunology , Cell Line , Gene Knock-In Techniques , Immunoglobulin Heavy Chains/genetics , Immunoglobulin M/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
10.
EMBO J ; 40(17): e107621, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34369608

ABSTRACT

The enormous diversity of antibody specificities is generated by random rearrangement of immunoglobulin gene segments and is important for general protection against pathogens. Since random rearrangement harbors the risk of producing self-destructive antibodies, it is assumed that autoreactive antibody specificities are removed during early B-cell development leading to a peripheral compartment devoid of autoreactivity. Here, we immunized wild-type mice with insulin as a common self-antigen and monitored diabetes symptoms as a measure for autoimmune disease. Our results show that autoreactive anti-insulin IgM and IgG antibodies associated with autoimmune diabetes can readily be generated in wild-type animals. Surprisingly, recall immunizations induced increased titers of high-affinity insulin-specific IgM, which prevented autoimmune diabetes. We refer to this phenomenon as adaptive tolerance, in which high-affinity memory IgM prevents autoimmune destruction by competing with self-destructive antibodies. Together, this study suggests that B-cell tolerance is not defined by the absolute elimination of autoreactive specificities, as harmful autoantibody responses can be generated in wild-type animals. In contrast, inducible generation of autoantigen-specific affinity-matured IgM acts as a protective mechanism preventing self-destruction.


Subject(s)
Antibodies, Neutralizing/immunology , Autoantibodies/immunology , Diabetes Mellitus, Type 1/immunology , Immunoglobulin M/immunology , Immunologic Memory , Insulin/immunology , Animals , B-Lymphocytes/immunology , Female , Immune Tolerance , Mice , Mice, Inbred C57BL
11.
Front Immunol ; 12: 709240, 2021.
Article in English | MEDLINE | ID: mdl-34434193

ABSTRACT

Mature B cells co-express IgM and IgD B cell antigen receptors (BCR) on their surface. While IgM BCR expression is already essential at early stages of development, the role of the IgD-class BCR remains unclear as most B cell functions appeared unchanged in IgD-deficient mice. Here, we show that IgD-deficient mice have an accelerated rate of B cell responsiveness as they activate antibody production within 24h after immunization, whereas wildtype (WT) animals required 3 days to activate primary antibody responses. Strikingly, soluble monovalent antigen suppresses IgG antibody production induced by multivalent antigen in WT mice. In contrast, IgD-deficient mice were not able to modulate IgG responses suggesting that IgD controls the activation rate of B cells and subsequent antibody production by sensing and distinguishing antigen-valences. Using an insulin-derived peptide we tested the role of IgD in autoimmunity. We show that primary autoreactive antibody responses are generated in WT and in IgD-deficient mice. However, insulin-specific autoantibodies were detected earlier and caused more severe symptoms of autoimmune diabetes in IgD-deficient mice as compared to WT mice. The rapid control of autoimmune diabetes in WT animals was associated with the generation of high-affinity IgM that protects insulin from autoimmune degradation. In IgD-deficient mice, however, the generation of high-affinity protective IgM is delayed resulting in prolonged autoimmune diabetes. Our data suggest that IgD is required for the transition from primary, highly autoreactive, to secondary antigen-specific antibody responses generated by affinity maturation.


Subject(s)
Antibody Affinity , Antibody Formation , Immunoglobulin D/physiology , Animals , Autoantigens/immunology , Autoimmunity , B-Lymphocytes/immunology , Female , Immunoglobulin G/biosynthesis , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Receptors, Antigen, B-Cell/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...